<var id="fnfpo"><source id="fnfpo"></source></var>
<rp id="fnfpo"></rp>

<em id="fnfpo"><object id="fnfpo"><input id="fnfpo"></input></object></em>
<em id="fnfpo"><acronym id="fnfpo"></acronym></em>
  • <th id="fnfpo"><track id="fnfpo"></track></th>
  • <progress id="fnfpo"><track id="fnfpo"></track></progress>
  • <tbody id="fnfpo"><pre id="fnfpo"></pre></tbody>

  • x
    x

    采用LCC拓撲實現寬輸出范圍LED驅動電源

    發布時間:2016-9-9 10:55    發布者:eechina
    關鍵詞: LED驅動 , LCC
    作者:江萬春,英飛凌科技應用中心 FAE主任工程師;錢家法,英飛凌科技應用中心 FAE經理

    1.    引言

    近年來,LED光源要求LED驅動器支持越來越寬的輸出電壓范圍(比如25%-100%)以及輸出電流范圍(比如1%~100%,甚至0.1%-100%),以實現更寬的調光范圍。為了提高LED驅動電源的通用性,要求使用同一個驅動電源支持不同的LED光源。同時要求線路簡單,低成本,高效率,高可靠性,長壽命等。

    采用16腳封裝,集成PFC和半橋諧振控制器的ICL5101,并使用LCC拓撲很好的實現了以上目標,它的高集成度可減少外部元件數量,非常合適結合LCC高性能的優勢。實現了極寬的輸出電壓電流范圍(電壓25%-100%, 電流0-100%),并且滿載效率超過93%,同時電路簡單,成本低。由于LCC的特性,它也可以實現無次級電流反饋恒流。

    2.    LLC與LCC拓撲的輸出范圍

    為了應對輸出燈珠數和驅動電流的多樣性,減少LED驅動電源的項目數目,需要盡可能的提高驅動電源的通用性,對輸出電壓電流范圍就要求比較寬。

    目前大功率恒流LED驅動電源的設計,比較常見的軟開關拓撲是LLC,它的輸出V-I特性如圖-1所示。從圖中可見,LLC拓撲的輸出電壓、電流范圍下限都比較高。隨著用戶對調光要求的越來越高,LLC拓撲的這種輸出特性的局限性也越來越明顯。如果輸出直接恒流,LLC拓撲在恒流時的電壓不能夠達到很低,即對燈珠個數的適應性有較大局限性;當需要對電壓相對固定的特定燈串時進行調光的時候,調光電流在相對較窄的頻率范圍內不能達到比較低范圍。如果需要做到深的調光深度,往往需要間歇工作以達到小的平均電流,甚至采用額外一級DC/DC電流來實現,產生額外的紋波電流或增加系統成本及降低效率。

    一種更有優勢的拓撲LCC被提出,在相對較窄的頻率范圍內,它可以將輸出電壓和電流的下限降低,如果圖-1的箭頭所示。降低后將會達到圖-2所示的范圍,輸出電壓和電流的下限幾乎可以到達零,極大的提高了驅動電源的適應性。



    3.    LLC與LCC拓撲和一些輸出特性

    圖-3和圖-5分別是LLC和LCC的拓撲圖,LCC拓撲相對LLC只是將于負載并聯的電感換成電容,最后是由一個電感,一個串聯的電容,一個與負載并聯的電容構成。

    圖-4和圖-6分別是LLC與LCC的輸出電流隨頻率的變化曲線,不同曲線代表不同負載電阻條件。



    兩圖中虛線是恒流軌跡線,當負載電阻變化時,工作頻率需要做相應的變化使得電流保持穩定不變,從圖-4中可以看出,采用LLC拓撲實現恒流輸出時,不同負載線之間的間隔較大,意味著頻率變化較大。而從圖-6中可以看出,采用LCC拓撲實現恒流輸出時,不同負載線之間的間隔比較緊密,意味著頻率變化較小。也就是說,LCC拓撲實現恒流時,頻率隨負載變化的范圍比LLC的要小很多。

    同樣可以做類似分析,當固定輸出電壓時做調光應用,LCC同樣可以比LLC實現更小的頻率變化范圍,而且電流調節深度更深。
    另外輸出短路的性能對驅動電源來說也是一個非常重要的指標,對LLC拓撲來說,負載電阻減小至短路時,由于其與Lm并聯,諧振腔阻抗的感性部分將會減弱,容性將會增強而容易進入容性區,導致開關管容易出現硬開關(在最低工作頻率小于諧振頻率時)。而對LCC拓撲來說,負載電阻減小至短路時,由于其與Cp并聯,諧振腔阻抗的容性部分將會減弱,感性將會增強,電路仍然工作在安全的感性區。LCC的最小工作頻率會設計大于(甚至遠大于)串聯電感和串聯電容的諧振頻率以保證電路工作在感性區實現ZVS,輸出短路的時候,頻率會減小,但會被限制在最小工作頻率。通過合理地設計諧振腔,短路電流可以做到稍大于額定輸出電流,比如110%-120%。

    從圖-6可以看到,存在著某一個頻率點,這個頻率是諧振電感與兩個電容都是串聯時的諧振頻率,不同負載電阻變化時,電流會匯聚在一個固定點。說明如果電路工作在這個頻率時,輸出電流無需電流采樣作為反饋而自然實現恒流。利用這個特點,可以省略電流采樣和反饋電路,使得整體電路更具有成本競爭性,甚至可以與“PFC+反激”的拓撲競爭,使其有競爭力的功率應用范圍變得更廣,小到30W,大到300W。

    4.    實例

    這里采用英飛凌的高集成度控制器ICL5101來實現一個120W的LCC恒流LED驅動電源。

    圖-7是LCC拓撲結構,采用次級電流采樣做恒流反饋,并能實現0-10V調光的示意電路。PFC開關管采用了英飛凌的高性價比P6系列CoolMOSTM IPD60R190P6,LCC開關管采用英飛凌針對消費市場的低成本CE系列CoolMOSTM IPD60R650CE。兩個型號均為TO-252貼片封裝,無散熱器,整體電路非常簡潔。

    圖-8是省略次級電流采樣反饋的示意電路,工作在固定頻率,整體電路更加精簡,整機成本可以與“PFC+反激”拓撲競爭?紤]到效率等因素,整體成本甚至更低。



    作為說明,這里對有次級電流反饋的,采用圖-7所示電路形式的實例做了實際測試。

    這個實例的輸出電壓范圍是20-80V,如果保證次級Vcc的供電,實際輸出電壓下限可以更低;輸出電流范圍是0mA-1.5A。
    表-1是輸出電流與頻率在不同輸出電壓條件下的數據,圖-9是根據此數據畫出的曲線。整個輸出電壓(20-80V),輸出電流(0.01-1.5A)范圍內,頻率的變化范圍也只有80kHz左右的變化。特別是恒流在最大電流時,頻率的變化范圍只有幾kHz,恒定電壓在80V調光時,頻率范圍是39kHz左右。

    表-1 輸出電壓,電流與頻率數據     
     20V40V60V80V
    0.01A117.29280.875
    0.075A111.586.578.573.8
    0.15A104.585.677.872.2
    0.75A64.160.658.457.1
    1.5A3938.537.936.5
       
    表-2  230Vac輸入下的輸出電壓,電流與效率數據
     20V40V60V80V
    0.01A11.70%17.30%19.00%17.10%
    0.075A48.00%55.80%57.50%57.80%
    0.15A62.30%68.80%70.50%71.10%
    0.75A81.50%86.50%87.00%88.50%
    1.5A84.10%88.90%91.50%93.10%



    表-3 不同輸入電壓下的滿載效率和紋波電流數據
    輸入電壓輸出電壓輸出電流效率紋波電流(峰峰值)
    90Vac80V1.5A90.60%69mA
    100Vac80V1.5A91.30%68mA
    120Vac80V1.5A91.80%67mA
    277Vac80V1.5A93.10%66mA

    在230Vac的輸入條件,80V、1.5A的條件下得到最高的效率93.1%。詳細數據如表-2和圖-10所示。表-3是全電壓范圍下的滿載效率和紋波電流數據?梢钥闯黾y波電流的表現也很優秀,峰-峰值小于2.5%,都在70mA以下。

    另外,ICL5101的THD和PF性能也很出色,詳細數據分別如圖-11和圖-12所示。100%負載下,THD可低于5%。甚至在50%負載及277Vac條件下,THD小于10%,遠低于EN61000-3-2 class C 要求。



    最后是短路電流,實測值是1.7A,比較接近滿載電流1.5A,這也是LCC比較LLC的主要優點之一。

    5.    結論

    LCC拓撲可以在較窄的頻率變化范圍內,實現極寬的輸出電壓及電流調節范圍;谟w凌單芯片集成“PFC+半橋諧振”控制器ICL5101,可以很容易地實現高效率、低THD和高PF值。集成的控制IC,還可以大幅度簡化電路,減少元器件數量。并且ICL5101提供了無次級電流采樣反饋做恒流的選項,使系統變得更緊湊,該IC所有工作參數均可通過簡單的外圍電阻進行調節,是實現可靠的配置設計的理想選擇。全面的保護功能,包括容性模式保護和可調節的外部過熱保護,加強了故障情況檢測,提高系統的可靠性。

    本文地址:http://www.portaltwn.com/thread-173476-1-1.html     【打印本頁】

    本站部分文章為轉載或網友發布,目的在于傳遞和分享信息,并不代表本網贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據著作權人的要求,第一時間更正或刪除。
    您需要登錄后才可以發表評論 登錄 | 立即注冊

    廠商推薦

    • Microchip視頻專區
    • 深度體驗Microchip自動輔助駕駛應用方案——2025巡展開啟報名!
    • Cortex-M4外設 —— TC&TCC結合事件系統&DMA優化任務培訓教程
    • 利用模擬開發工具生態系統進行安全電路設計
    • 想要避免發生災難,就用MPLAB SiC電源仿真器!
    • 貿澤電子(Mouser)專區

    相關視頻

    關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
    電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
    快速回復 返回頂部 返回列表
    精品一区二区三区自拍图片区_国产成人亚洲精品_亚洲Va欧美va国产综合888_久久亚洲国产精品五月天婷