<var id="fnfpo"><source id="fnfpo"></source></var>
<rp id="fnfpo"></rp>

<em id="fnfpo"><object id="fnfpo"><input id="fnfpo"></input></object></em>
<em id="fnfpo"><acronym id="fnfpo"></acronym></em>
  • <th id="fnfpo"><track id="fnfpo"></track></th>
  • <progress id="fnfpo"><track id="fnfpo"></track></progress>
  • <tbody id="fnfpo"><pre id="fnfpo"></pre></tbody>

  • x
    x

    基于PDM的D/A轉換技術

    發布時間:2010-9-17 19:37    發布者:conniede
    關鍵詞: PDM , PWM
    1 引言  

    在數字信號處理中,常常需要將多位數字信號轉化為一位數字信號。例如,在通信領域,接收器接收到經過編碼的數字語音信號,需將他轉化為模擬信號,即將原來的模擬語音信號復原。經過編碼的語音信號,通常是多位的比特流。因此,如何將多位比特流轉化為模擬語音信號,便成為保證通信質量的關鍵。又如,在一些控制電路中,控制信號是經過計算生成的多位數字信號,而這些數字信號必須轉化為模擬信號才能對電路進行控制。因此,如何將多位數字信號轉化為符合實際要求的模擬信號,則成為控制電路設計者最關心的問題。

    在傳統的電路設計中,面對上述問題時,通常選擇使用由多個分離的電子元器件組成的D/A轉換器,有時我們也稱他為靜態D/A轉換器。但是由于靜態D/A轉換器的組成結構,決定了他在系統中,必須占用一定的空間及消耗一定量的功率。于是在那些要求攜帶方便的系統方案中,靜態D/A轉換器就不得不被替換掉。

    于是人們選擇所謂“數字基礎”的D/A轉換器。而用于數字D/A轉換的方法有2種:PWM(P ulse Width Modulation )脈沖寬度調制和PDM(Pulse Density Modulation)脈沖密度調制。這種數字D/A轉換器所占用的物理空間比較小,消耗的功率也比較小。因此,適用于對系統硬件大小以及功耗要求比較嚴格的系統。

    早在20世紀40年代,PWM就開始被應用在電話中。由于PWM的局限性,人們在二十年后,提出了PDM調制方法。但由于當時的應用市場尚不成規模,因而這種調制方法一直未能得到廣泛的關注和應用。近年來,由于數字技術在各個領域里得到了廣泛的應用,數字產品飛速發展,數字信號處理開始得到越來越多的關注。于是PDM調制技術重新得到重視,并被應用在不同的領域中。

    2 PDM基本介紹  

    PDM是一種在數字領域提供模擬信號的調制方法。在PDM信號中,邏輯“1”表示單個脈沖,邏輯“0”表示沒有脈沖。通常邏輯“1”和邏輯“0”是不連續的,邏輯“1”比較均勻地分布在每個調制信號周期里。其中單個脈沖并不表示幅值,而一系列脈沖的密度才對應于模擬信號中的幅值。完全由“1”組成的PDM信號對應于幅值為正的電壓;而完全由“0”組成的PDM信號則對應于負幅值的電壓;由“1”和“0”交替組成的信號則對應于0幅值的電壓。

    3 PDM的實現


    PDM調制技術的邏輯框圖如圖1所示。用1個分頻計數器實現符合實際應用要求的時鐘信號,脈沖周期為ΔT。再將時鐘信號送入?N位計數器,實現0,1,…,2N-1的計數。在計數的單個脈沖周期ΔT里,將計數結果各個位上的邏輯值經過一系列邏輯操作,實現N位比較基準脈沖信號,分別為Bit0,Bit1,Bit2,…,Bit(N -1)。值得注意的是,在每一個ΔT里,都只有一個位上有邏輯“1”,其他位 上均為邏輯“0”。同時將寄存器輸出的N位總線數據與比較基準脈沖信號Bit0,Bit1,Bit2,…,Bit(N-1)進行逐位與操作,再將各個位上的結果相或,便得到ΔT內的調 制結果。這樣,在整個調 制周期結束后便得到調制結果。

    對于N位的數字信號,調制周期T=2N·ΔT。對于8位的數字待調信號,每個脈沖周期ΔT的調制結果為: 


    例如,對8位的十六進制數字信號“1AH”進行調制。用8位的計數器產生如圖2所示的比較基準脈沖信號。顯然,在每一個脈沖周期ΔT里,Bit0~Bit7中都只有1個位上有脈沖。


    而十六進制數“1AH”對應的二進制數為“00011010”,其中Bit4,Bit3,Bit1為“1”,其他各位均為“0”,經過逐位邏輯操作,即:


    經過一個調制周期的調制,便得到如圖3所示的調制信號。這樣8位的數字信號就轉化為1位的脈沖信號。


    4 PDM與PWM的分析比較

    數字信號經過PDM調制后,經過一個簡單的低通濾波器就可以實現數字信號的數模轉換。為方便比較,在仿真中,設定:待調數字信號長度為2個字,分別為“1AH,A1H”。脈沖周期ΔT為1 ms,1個調制周期的時間為256 ms。  

    在RC濾波電路中,選用不同的R,C值,對于調制結果的精度以及上升沿和下降沿的持續時間有很大的影響。

    (1)RC=50·ΔT?

    圖4所示的是“1AH,A1H”2個8位字用PDM調制后,經過RC濾波輸出的模擬信號。其交流紋波較小,但信號響應的速度較慢,即信號變化的上升沿比較緩和。


    圖5所示的是“1AH,A1H”2個8位字用PWM調制經過RC濾波后輸出的模擬信號。顯然其中的交流紋波成分比用PDM調制后的模擬信號要大的多。


    (2)RC=10·ΔT

    圖6所示的是在RC=10·ΔT時,2個8位字“1AH,A1H”用PDM調制經過RC濾波后輸出的模擬信號,其交流紋波的幅值約為直流成分的20%,響應時間約為整個調制周期的7.5%。

    以上的仿真結果表明,相對于PWM調制信號,PDM的調制信號經過低通濾波器后,模擬信號中的交流成分得到了明顯的削弱,即噪音相對較小。而對于PDM調制,RC濾波網絡中的RC值越大,模擬信號中的交流成分越少,而響應速度則越慢。

    因此,合理選取R,C值,使得交流成分的大小和響應速度都能夠滿足實際應用的要求,這是系統設計的關鍵。     

    5 PDM的應用

    在近幾年里,PDM技術廣泛地應用于數字系統的各個領域中。在通信領域,許多通信工具中的語音信號還原都使用了PDM技術。

    幾乎所有CDMA手機中,都使用了PDM的專 利技術。在控制領域,許多控制單元如電源管理中PDM技術也有應用。在音頻 電子領域,PDM技術也得到了廣泛的應用,如許多消費電子產品中的數字化麥克風。

    當然,PDM技術也有他的局限性。例如,當需要調制的數字信號位數增加時,調制周期 就 相應變長,濾波器的響應速度也相應變慢。而在應用于D/A轉換的調制方法中,PDM技術無 疑是一種比較理想的調制方法。
    本文地址:http://www.portaltwn.com/thread-27693-1-1.html     【打印本頁】

    本站部分文章為轉載或網友發布,目的在于傳遞和分享信息,并不代表本網贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據著作權人的要求,第一時間更正或刪除。
    您需要登錄后才可以發表評論 登錄 | 立即注冊

    廠商推薦

    • Microchip視頻專區
    • EtherCAT®和Microchip LAN925x從站控制器介紹培訓教程
    • MPLAB®模擬設計器——在線電源解決方案,加速設計
    • 讓您的模擬設計靈感,化為觸手可及的現實
    • 深度體驗Microchip自動輔助駕駛應用方案——2025巡展開啟報名!
    • 貿澤電子(Mouser)專區

    相關視頻

    關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
    電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
    快速回復 返回頂部 返回列表
    精品一区二区三区自拍图片区_国产成人亚洲精品_亚洲Va欧美va国产综合888_久久亚洲国产精品五月天婷