<var id="fnfpo"><source id="fnfpo"></source></var>
<rp id="fnfpo"></rp>

<em id="fnfpo"><object id="fnfpo"><input id="fnfpo"></input></object></em>
<em id="fnfpo"><acronym id="fnfpo"></acronym></em>
  • <th id="fnfpo"><track id="fnfpo"></track></th>
  • <progress id="fnfpo"><track id="fnfpo"></track></progress>
  • <tbody id="fnfpo"><pre id="fnfpo"></pre></tbody>

  • x
    x

    實測!AlexNet卷積核在FPGA占90%資源仍跑750MHz|算力達288萬張圖像/秒

    發布時間:2020-4-27 11:37    發布者:eechina
    關鍵詞: 機器學習 , AlexNet , Achronix , MLP
    Achronix創新的機器學習處理器(MLP)突破傳統FPGA時序性能瓶頸

    作者:楊宇,Achronix資深現場應用工程師

    MLP_Conv2D是功能齊全的設計,可將2D輸入圖像與多個內核同時進行卷積。 該設計充分利用了MLP和BRAM模塊,每個MLP一個周期執行12個int8乘法。此外,MLP列和BRAM塊均等級聯以有效地將圖像數據傳遞,從而允許同時處理多個內核。

    該設計使用NoC接入點(NAP)從片上網絡(NoC)讀取或寫入數據。NoC連接到Speedster7t器件中的GDDR6控制器再到外部存儲器。

    AlexNet

    盡管最初為AlexNet圖像和內核大小配置了MLP_Conv2D設計,但是2D卷積是一個通用過程,因此可以重新配置該設計并使其適應許多不同的2D方法。

    2D卷積的一般原理是在圖像(實際上是另一個2D矩陣)上傳遞內核(2D矩陣)。對于每次計算,內核均以輸入圖像的像素為中心,并對每個內核值(稱為權重)與其當前對齊的像素執行乘法運算。這些乘法的總和給出了原始圖像像素的特定卷積結果。然后將內核移至下一個像素,并重復該過程。

    經過訓練的內核,2D卷積生成一個輸出結果圖像,突出顯示輸入圖像的特定特征,例如垂直線,水平線,變化角度的對角線和變化半徑的曲線。然后可以將這些特征輸入到其他處理層(包括其他2D卷積),然后可以將其標識為(通常在軟件中)為特定對象。

    因此,二維卷積處理不應被視為圖像識別的完整解決方案,而應被視為處理操作鏈中的單個關鍵組件。

    乘法密度

    2D卷積的挑戰是所需的乘法數量,這就是MLP中專用的乘法器陣列。對于AlexNet配置,每個內核為11×11= 121個權重值。但是,卷積實際上是3D的,因為輸入圖像具有三層(RGB),因此一組內核有121×3 = 363個乘法來產生單個輸出結果。AlexNet輸入圖像為227×227;但是,此圖像的stride為4(在計算之間內核移動了四個像素)。此過程導致輸出結果矩陣為54×54 = 2916個結果。因此,對于一幅圖像需要363×2916 = 1,058,508次乘法;即處理一個圖像需要進行一百萬次以上的累加運算。其中單個Kernel進行2D卷積的動態示意圖如下:


    圖表 1 單個Kernel進行2D卷積的動態示意圖

    對于MLP_Conv2D,其設計旨在一次處理一幅圖像中的60個內核,單次執行超過6000萬次乘法累加操作。

    性能

    MLP_Conv2D設計可以以750 MHz的頻率運行。單個MLP能夠在137 μs內對具有11×11內核的單個227×227 RGB輸入圖像進行卷積,相當于每秒15.4GOPS(包含乘和加)。 但一個MLP_Conv2D實例由60個并行運行的MLP構成,可以同時對60個輸入圖像進行卷積,相當于924GOPS。 最后,將多達40個MLP_Conv2D實例化到單個器件中,每個實例都通過自己的NAP將數據傳輸到GDDR6存儲器,從而實現了組合高達37 TOPS的性能-相當于每秒處理28,8000張圖像(本設計主要針對卷積核)。

    資源

    MLP_Conv2D圍繞MLP和BRAM塊功能而設計,并使用它們各自的內部級聯走線。 同樣,NAP允許直接從外部存儲器路由數據互聯。這些功能可實現最小的附加邏輯或路由要求,利用率表如下:


    圖表 2 單個MLP_Conv2D實例資源使用


    圖表 3 并行40個MLP_Conv2D實例資源使用


    圖表 4 MLP_Conv2D框圖

    數據流:單個MLP

    每個MLP都有一個鄰近的BRAM。 在此設計中BRAM用于存儲內核并將其多次傳遞到MLP。 初始化時,將從輸入NAP中讀取不同的內核,并將其寫入相應的BRAM。 BRAM在寫側配置為72位,而讀取設置為144位。在操作期間,僅將96位用作內核權重,即讀取為4個權重×3層×8位。初始圖像數據從NAP讀取到輸入FIFO中,該輸入FIFO用于將圖像存儲為一系列行。盡管此輸入存儲器被列為FIFO,但仍可作為可重復讀取的FIFO,因為可以多次從中讀取行。該存儲器配置為144位寬,僅使用96位,由兩個BRAM72K組成。每個字由4個像素×3層×8位組成。初始化時,將讀取足夠的行以匹配內核中的行數加上垂直跨步所需的行數。即



    一旦加載了初始數據和內核,便開始計算。

    從輸入FIFO中讀取第一條圖像行,并讀取與內核水平大小匹配的圖像數據像素數量。在讀取這些像素時,將讀取匹配的內核權重。MLP將這些96位流的每一個乘以12個int8值并累加結果。輸入FIFO前進到第二行,重復此過程,直到內核的所有行都與輸入圖像左上角的適當像素相乘。在此過程中,MLP積累了結果;現在,該結果是圖像與內核卷積的左上角的2D卷積。該結果以16位結果的形式從MLP輸出。重復此過程,輸入FIFO跨行超前STRIDE參數設置的像素數(對于當前設計,STRIDE固定為4)。在每個處理周期包括在內時,都會生成另一個結果,直到水平地獲取了適當數量的結果為止。

    然后,將輸入FIFO下移STRIDE行數,然后重復該過程以生成輸入圖像中下一組線的卷積結果。當輸入FIFO向下移動時,不再需要FIFO中的初始行,因此與MLP計算并行時,將加載下一組用于輸入圖像的STRIDE行?紤]外部存儲源的帶寬要求時,可以看到映像和內核僅從內存中讀取一次。然后,它們可以從各自的BRAM中重新使用,從而減少了外部存儲器帶寬的總體負擔,其過程參考圖表1。

    數據流:多個MLP

    MLP的一個顯著特點是能夠將數據和結果從一個MLP或BRAM級聯到同一列中。 MLP_Conv2D通過將MLP及其關聯的BRAM放在列組中來利用這些級聯路徑。在將BRAM加載到內核時,級聯路徑用于將數據流水線傳輸到每個BRAM,并且使用BRAM塊地址模式選擇要寫入內核的BRAM。

    在計算過程中,輸入的圖像數據將在MLP的列中級聯,以便每個MLP在其下一個鄰居之后的一個周期接收到圖像數據。同時,控制內核讀取的BRAM讀取地址以一個周期的延遲級聯到BRAM列中。這樣,每個MLP在其先前的MLP之后一個周期接收相同的圖像數據和相同的內核讀取地址。每個MLP的計算差異在于,其關聯的BRAM將具有不同的內核數據。結果是一個圖像并行地與多個內核卷積。并行卷積的數量稱為BATCH。

    數據流:計算結果

    如前所述,每個MLP為內核和圖像部分的每個卷積生成16位結果。

    MLP排列在16列中,因此從該列中生成一個256位字,該字由該列中每個MLP的結果組成。然后將此256位字寫入輸出NAP。 這種安排導致卷積結果作為同一圖像的圖層存儲在內存中;因此,當三層或RGB存儲在單個輸入字中時,匹配輸入字排列。

    然后,由于可以在完整的256位結果上的16個并行實例中執行激活功能,因此該安排允許將涉及的結果并行處理到激活層中。同樣,一旦256位結果通過輸出NAP寫回到存儲器中,則可以將結果讀回到另一個2D卷積電路中。


    圖表 5 MLP_Conv2D布局示意圖

    布局

    在Speedster7t架構中,每個NAP對應32個MLP。該設計經過優化,可使用兩個NAP,一個用于讀取,一個用于寫入,因此可以對應64個MLP。

    但是,輸入和輸出FIFO需要兩個BRAM 72K存儲塊才能創建一個256位寬的組合存儲器。因此,這些存儲器將消耗64個可用位置中的四個用于數據I / O。
    設計被安排為使用與兩個NAP相關聯的四列MLP。但是,第一列和最后一列都使用14個MLP,剩下兩個MLP位置分別用于輸入和輸出FIFO。中間兩列使用所有16個可用的MLP。在平面圖中,各列的排列方式是使第一列(底部具有輸入FIFO存儲器)與NAP相鄰,以改善時序。

    下面顯示了一個實例,即使用了60個MLP(Batch=60)的設計實際布局圖(突出顯示了路線):


    圖表 6 60個MLP布局圖

    在全芯片構建中使用40個實例時,盡力使每個實例都使用NAP與內存進行通信。結果,FMax仍能達到750MHz,并使用掉芯片中的所有80個NAP以及94%的MLP和BRAM72K。


    圖表 7 2400個MLP布局圖

    下一期將舉例介紹MLP的浮點架構和性能,敬請期待。

    本文地址:http://www.portaltwn.com/thread-586712-1-1.html     【打印本頁】

    本站部分文章為轉載或網友發布,目的在于傳遞和分享信息,并不代表本網贊同其觀點和對其真實性負責;文章版權歸原作者及原出處所有,如涉及作品內容、版權和其它問題,我們將根據著作權人的要求,第一時間更正或刪除。
    您需要登錄后才可以發表評論 登錄 | 立即注冊

    廠商推薦

    • Microchip視頻專區
    • EtherCAT®和Microchip LAN925x從站控制器介紹培訓教程
    • MPLAB®模擬設計器——在線電源解決方案,加速設計
    • 讓您的模擬設計靈感,化為觸手可及的現實
    • 深度體驗Microchip自動輔助駕駛應用方案——2025巡展開啟報名!
    • 貿澤電子(Mouser)專區

    相關視頻

    關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
    電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
    快速回復 返回頂部 返回列表
    精品一区二区三区自拍图片区_国产成人亚洲精品_亚洲Va欧美va国产综合888_久久亚洲国产精品五月天婷